

Development of Diagnostics for Cysticercosis and Taeniasis—CDC Research

3rd European Cysticercosis Workshop Antwerpen, Belgium April 16, 2012

Patricia Wilkins, PhD
Division of Parasitic Diseases & Malaria

Laboratory Objectives

Review progress to develop improved methods for

- Diagnosis of neurocysticercosis
- Detection of cysticercosis and taeniasis cases

LLGP Immunoblot for Cysticercosis

Assay performance of the LLGP Immunoblot

Patient type	Specificity	Sensitivity
2 or more cysts	100%	98%
Single cyst (USA)	100%	~60%
Single cyst (Peru)	100%	~80%
Single cyst (India)	100%	~79%

LLGP immunoblot is available.....

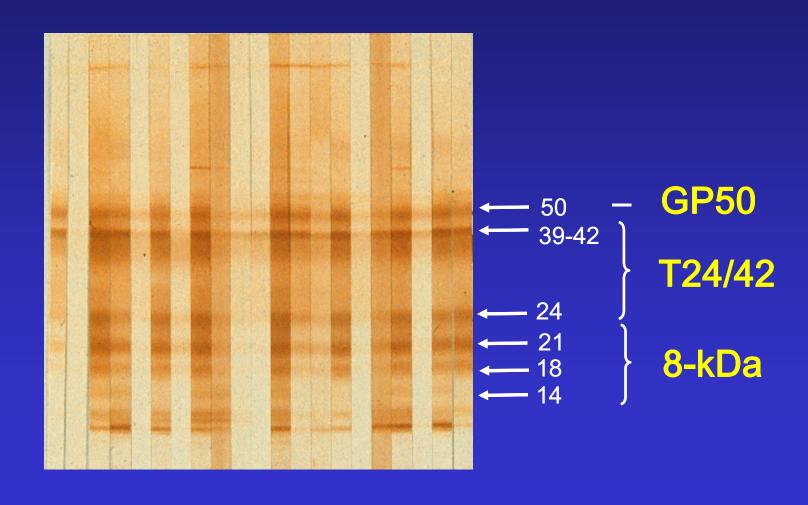
- Commercially from Immunetics, (Specialty Labs, Focus Labs) but expensive
- Technology transfer of CDC test requires high complexity laboratory capacity

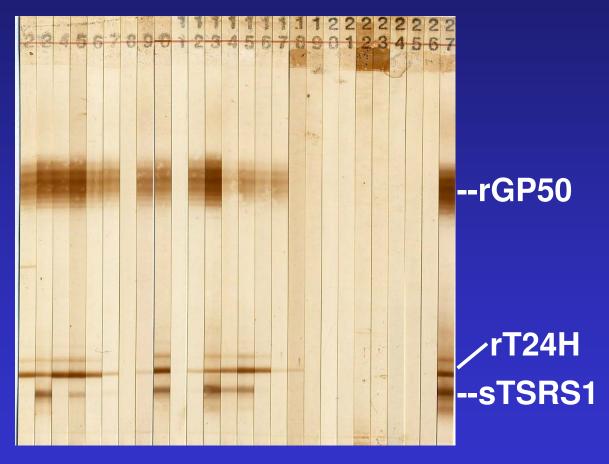
What is needed?

- Simple
- Sustainable (recombinant antigens)
- Available

Proteomics Approach

- Purify individual native proteins to homogeneity
- Obtain aa sequence from tryptic peptides
- Design degenerate primers
- PCR amplify and clone genes
- Express proteins in baculovirus systems
- Evaluate diagnostic potential of proteins


Isolation of cyst LLGP proteins by preparative gel electrophoresis



SDS PAGE separation of fractions collected from preparative gel; Immunoblot probed with cysticercosis + serum pool

7 antigens in LLGP represent 3 diagnostic protein families

Immunoblot using recombinant proteins

Recombinant proteins

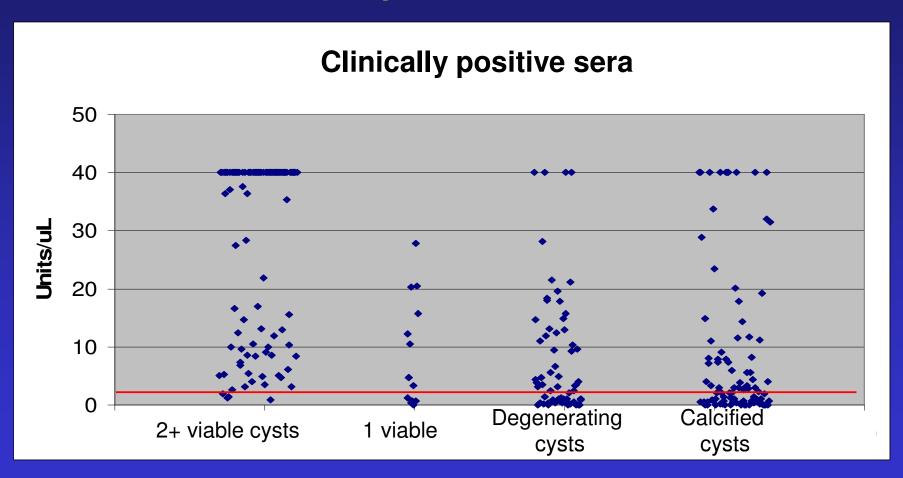
Evaluation of recombinant proteins in immunoblot

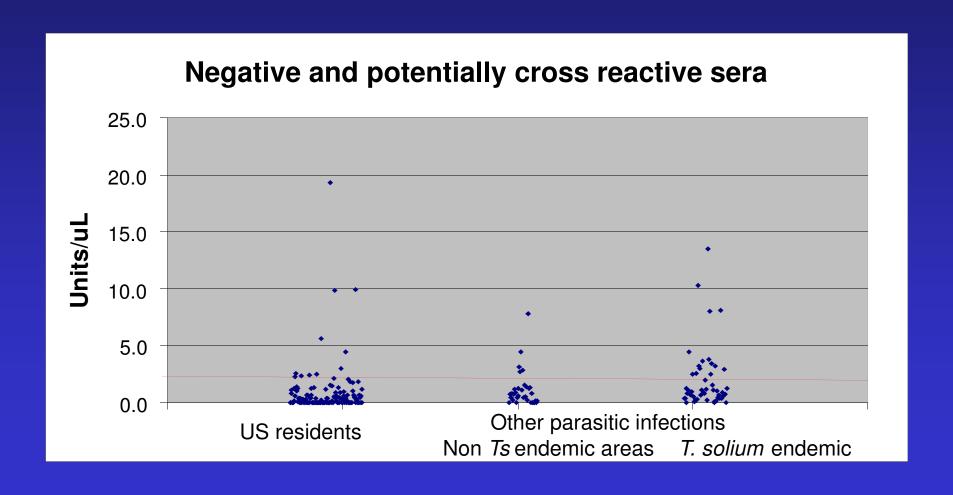
Proteins (s)	Sens ¹	Sens ²	Spec	J-Index
Gp50 + rT24H + TSRS1	99	83	98	.99
Gp50 + rT24H	99	83	99	.98
Gp50 + TSRS1	97	80	98	.96
rT24H+ TSRS1	99	81	99	.99
Gp50	96	79	99	.95
rT24H	99	80	100	.99
TSRS1	75	57	99	.75

¹ Sensitivity for 2+ viable cysts

² Sensitivity for 1 viable cyst

Rationale for selecting rT24


Protein	Sens ¹	Spec	Assay format
Native gp42	94%	ND	LLGP-EITB
Native gp24	92%	ND	(Tsang, 1989)
rT24H	94%	98%	Immunoblot (Hancock, 1999)
rT24H	98%	100%	Immunoblot


T24 ELISA design

- A portion of rT24 (T24H), the large, extracellular loop domain, was expressed in Tni insect cells.
- Assay employs a standard curve—results are expressed as Units/uL, calculated using 4-parameter curve fit analysis
- Optimized rT24, serum, and conjugate concentrations and incubation times
- Reportable range is 0-40 units/uL
- Established acceptance range for internal positive control
- Established a cut-off value using the J-index was <u>2.55</u>
 <u>Units/uL</u>

Evaluation of the T24 ELISA using defined cysticercosis sera

Evaluation of the T24 ELISA using defined cross-reactor sera

Evaluation of the T24 ELISA using defined NCC serum battery

	2+ cysts	1 cyst	Neg *	All Neg**
T24 Pos	99	9	10	55
T24 Neg	4	6	161	280
Totals	103	15	171	335

Sensitivity = 96%

Specificity = *94% in sera collected in areas expected to be *T. solium* free; ** 84% if all presumed negative sera are used for calculation

Further evaluation of rT24 ELISA

- Evaluation of T24 using sera collected in community surveys
- Found a poor correlation of T24 ELISA results with LLGP-EITB, using kappa statistic, k = 0.26
- Discrepancies: LLGP+, T24- AND LLGP- T24+
- Results suggested that the T24 ELISA was not a viable assay

rProtein Blot Test

- Evaluated sera from community survey
- Agreement with LLGP-EITB using kappa statistic,
 k= 0.52
- Most (117/120) discordant specimens were LLGP-EITB +, T24 blot – due to gp50 only reactivity in 80 samples
- Advantages: easy to perform, no special equipment needed
- Disadvantages: qualitative results, subjective, lower throughput than ELISA, water quality is important

T24 ELISA v2

- Repurified baculovirus expressed T24 using MonoQ
- Re-tested a subset of samples from the Ecuador survey— 53 discordant samples
- Kappa value of this subset using old T24 = .067
- Kappa value of repurified T24 = .73
- Suggests that prior poor assay performance was related to antigen purity
- STATUS— retesting the samples from the Ecuador study

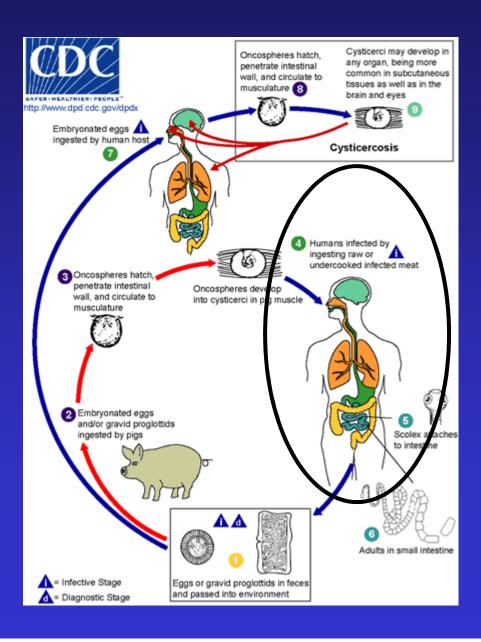
E. coli expressed rT24 ELISA

Expressed in pGEX 4T-2 with a 6His tag

rT24H	rT24HNS Factor Xa
2.269	2.923
1.035	1.408
0.512	0.560
0.177	0.220
0.093	0.102
0.074	0.078
0.083	0.085
0.084	0.128
	2.269 1.035 0.512 0.177 0.093 0.074 0.083

STATUS—preliminary, but would greatly simplify availability of the antigen

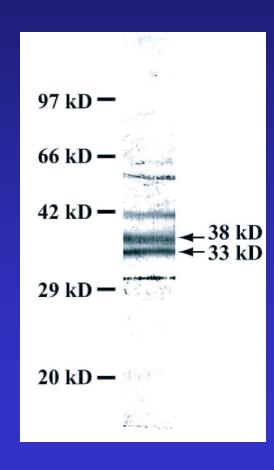
T24 ELISA—Conclusions


- Developed standardized methods for purification of baculovirus expressed rT24 from *Tni* insect cells and *E. coli*
- Preliminary data suggest we can develop a rT24 ELISA
 - quantitative
 - easy to perform and transfer to laboratories in endemic regions
 - E. coli expressed protein will facilitate technology transfer to commercial partners and researchers

T24 ELISA—Conclusions 2

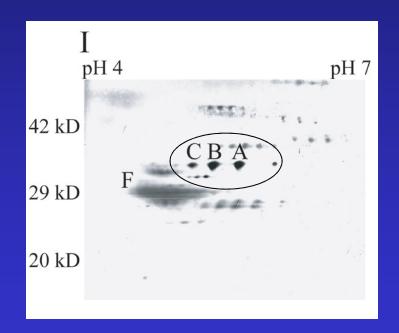
- The rT24 ELISA may be a valuable tool for epidemiologic studies and for estimates of the burden of cysticercosis
 - Do results correlate to LLGP-EITB results?
- More validation needed for use in community settings
- Utility for detecting specific antibodies in pigs has not been done

Immunodetection of the tapeworm carrier



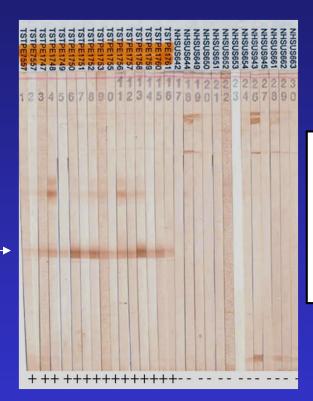
- Classic stool exam
- Coproantigen detection
- Serologic detection

Serodiagnosis of Taeniasis


- Original test: Used native ES antigen from in vitro cultured adult tapeworms collected from infected hamsters
- Production of the native antigens is labor intensive, time consuming and expensive
- Our goal: serological test using Recombinant proteins

Identification and Purification of Taeniasis Diagnostic Antigens

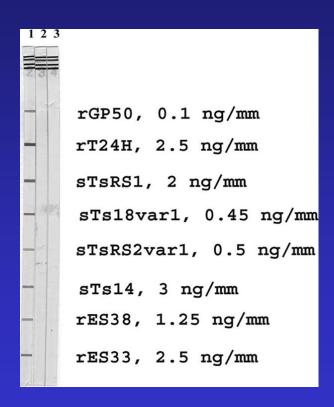
2-D gel electrophoresis


Western blot

Evaluation of rES38

rES38

Sensitivity = 99% (80/81)

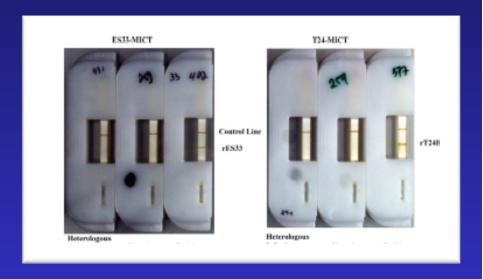

Specificity 99.7% (299/300)

What is needed to be tool ready?

- Develop field ready reagents and assays for detection of cysticercosis cases
 - To determine if a single protein can be used for detection of cysticercosis (in humans and pigs?)
 - —To determine if a single protein can be used for detection of taeniasis
 - —Combine the 2 proteins into a single assay for simultaneous identification of both diseases

Rapid laboratory tests—MAPIA

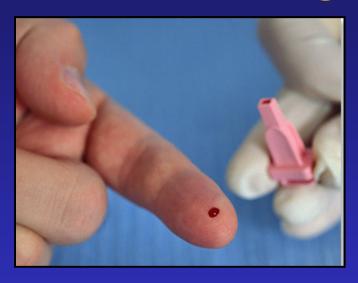
- Multi-antigen printing line assay
 - —Used to compare antigens
 - Antigens are sprayed onto nitrocellulose
 - Precursor to lateral flow test development
 - Optimum concentration of antigens is variable


MAPIA with cysticercosis and taeniasis antigens.

Cysticercosis/taeniasis-positive serum pool (lane 1), Echinococcosis positive serum (lane 2), Negative serum pool (lane 3) The optimum concentration of each antigen is shown.

Rapid laboratory tests—MICT

Lateral flow tests


- rT24 Sens/Spec = 94%, 99%
- rES33 Sens/Spec = 95%, 96%
- Advantages:
 - -Rapid
 - —Can be quantitative
- Disadvantages:
 - Difficult to develop
 - Dry storage
 - —Subjective if visually read

Standardized collection method for fingerstick blood

- Method collects a measured amount of blood (100ul)
- Filter paper is stored in a storage buffer –Stabilzyme and is never dried
- Not compatible with freezing
- Each specimen is stored separately

Conclusions

- Serum Ab tests for human cysticercosis, and blood/stool tests for tapeworm infections in humans exist
- Utility for porcine cysticercosis still needed
- Commercial partner is needed
- Further evaluation is needed to optimize format

Luminex based assays

- Allows responses to multiple antigens to be determined in a single test
- Each antigen is attached to a different bead with an individual signature
- We coupled beads with rGP50, rT24H, sTS14, sTS18, sTSRS1 sTSRS2
- We also prepared beads with rES33 and rES38, but these assays did not work

Luminex based assays for NCC

Proteins (s)	Sens ¹	Sens ²	Spec
Gp50 + rT24H + sTS18	99		91
Gp50	94		96
rT24H	91		94
sTS18	99		96

¹ Sensitivity for 2+ viable cysts

² Sensitivity for 1 viable cyst

What are the 8kDa proteins?

Immunoreactive LLGP proteins

SDS PAGE separation of fractions collected from preparative gel; Immunoblot probed with cysticercosis + serum pool

TS14 and TS18 contain related peptide sequences

Peptide Amino acid sequence

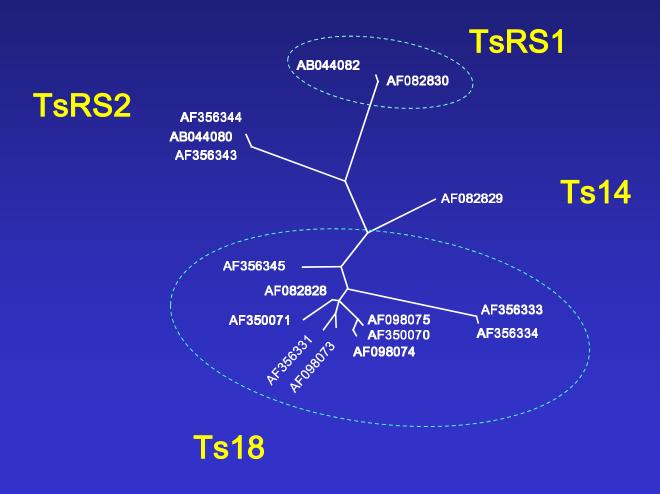
TS14 EKNKPKDVAASTKKGIEYVHEFFE

TS18 KNKPKDVAASTKKEIEYIWHNFFED

TS14 IAQLAK

TS18 IAQLAK

PCR cloning of TS14 and TS18 reveals related cDNAs


+1	
TS14 TGAACAACCTGTAGAATGCGTGCCTACATTGTGCTTCTCGCTCTCACTGTTTTCGTAGTGACGGTGTCGGCCGAG	75
TS18TATTCGTAGTGGCGGTTTCGGCCGAG	26
* ***** *******	
ં	
AAAAACAAACCGAAAGATGTTGCAAATAGTACGAAAAAAGGGATAGAATATGTCCACGAATTCTTCCACGAAGACCCGA	154
AAAAACAAACCGAAGTGTGATGCAAATAGTACTAAGAAAGA	109

લ્લ	
TTGGTAAACAAATTGCTCAACTCGCAAAGGAATGGAAGGAA	235
TTGGAAAACAAATTGCTCAACTCGCAAAGGACTGGAATGAAACAGTGCAGGAAGCCAAAGGCAAATTTTGGGCGTCACTGGC	190
*** *** *** **** * ******* **** *** **	
TTGAGCACTGCAAAGGTCCTAAGAAAAAACTGCTTAACTTGTCAACTTTCATGCGTTCTTCTCTCACTAATAAATGCTCA	318
TTGAGTACTGCAGAGGTCTGAAGAACAAAACTGCTTAACTTGTCAACTTTCATGCGTTCTTCTCTCTC	271
**** ***** **** **** **** *************	
TTAATAAGAAAAAAAAAAAAA 343	
TTAACAAGAAAAAAAAAAAAAA 297	
**** *********	

TS14, Ts18 and Ts21 constitute a family of proteins

8-kDa gene family

- 32 nucleic acid sequences
- 26 unique nt sequences
- 23 unique protein sequences
- 18 unique mature protein sequences
- Encode mature peptides of 66-67 aa
- All have at least 1 N-glycosylation site
- Can be chemically synthesized

Phylogenetic tree 8-kDa proteins

LLGP Immunoreactive proteins consist of 8kDa proteins

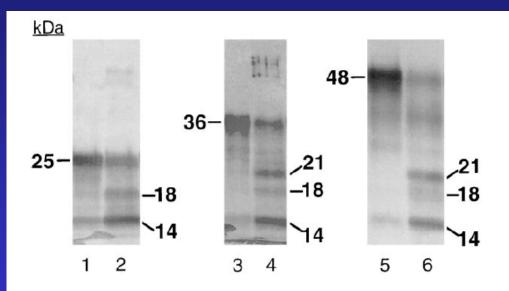


Fig. 1. DTT reduction of preparative gel fractions and the crude EITB antigen preparation. Immunoblot showing DTT reduction of three selected fractions from preparative gel electrophoresis. Three parent fractions (lanes 1, 3, 5) were reduced with DTT (lanes 2, 4, 6) and separated by SDS-PAGE before immunoblotting and probing with anti-*T. solium* pooled sera.

Multiple 8kDa protein complexes in the LLGP fraction

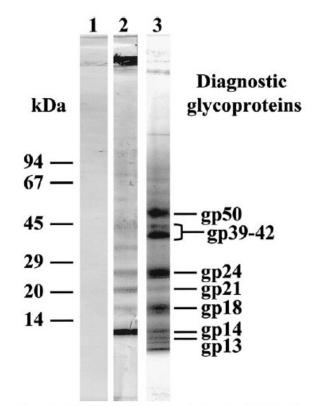
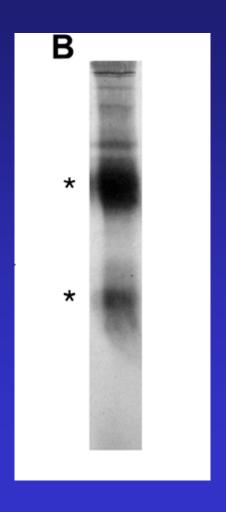


FIGURE 5. Anti-TS14 antibodies react with native EITB-C antigens. Polyclonal antibodies produced in goats against sTS14 were evaluated for reactivity with the EITB-C antigens. Reactivity of the goat sera collected at day 0 (lane 1) and day 56 (lane 2) after initial immunization was compared with a cysticercosis-positive human serum pool (lane 3), which was used to identify the cysticercosis diagnostic bands.

 Polyclonal rabbit anti-TS14 reacts with proteins larger than the 24 kDa (lane 2)

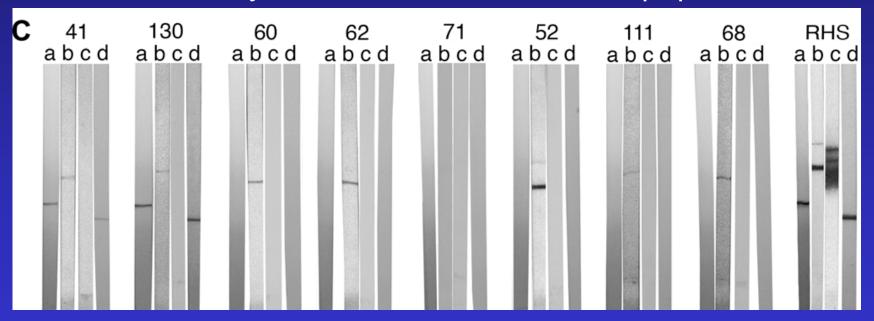
Other diagnostic proteins share similarities with 8kDa antigens


Table 1. Identification of subunit proteins of the native TsM 120 kDa protein complex by MALDI-TOF MS and N-terminal sequencing

Spot no.(s).	N-terminal sequence	Protein description (Accession number)	Matched peptide mass (m/z)	Sequence coverage (%)
1	EKNKPKDV	14 kDa glycoprotein (AF257776)	*	
2, 5	EKNKP	14 kDa glycoprotein (AF257776)	1916.92, 2045.01	20
7, 8	_	18 kDa glycoprotein (AF350070)	1302·62, 1487·73, 2160·02	34
10, 11	EKNKP	14 kDa glycoprotein (AF257776)	1255·65, 1916·92, 2045·01	32

^{*} Not determined.

8 kDa proteins are soluble in cyst fluid



- Nanobodies recognize 2 proteins in cyst fluid 50 and 32 kDa
- Both contained the same Nterminal aa sequence: EKNKPKDVA; TS14

8 kDa proteins are soluble in cyst fluid

Immunoreactivity of nanobodies with 8 kDa peptides

a = TS14, b = TS18, c = TSRS1, d= TSRS2

What are the 8kDa proteins?

- 8 kDa proteins have been identified by a number of groups
- Seem to form heteromeric complexes with other 8 kDa proteins and other proteins?
- May be the targets of the Ag detection assay
- What is their biological role?
- Where are they localized?

The team.....

CDC, Atlanta

John Noh
Sukwan Handali
Keith Levert
Paul Anderson
Patricia Lee
Isabel McAuliffe
Pete Harris

CDC, Atlanta Alumni Victor Tsang

Peter Schantz
Kathy Hancock
Joy Pilcher
Anne Boyer
Ryan Greene
Rebecca Woo
Christina Scheel
Sowmya Pattabhi
Azra Khan
Min Levine
Maribeth Lovegrove

John Noh

Sukwan Handali

CWG, Peru
Hugo Garcia
Emico Gonzales
Robert Gilman

Silvia Rodriguez
Guillermo Gonzvalez
Fernando Llanos
Jaime Romero
Marita Silvia

ITM, Antwerp

Pierre Dorny Sarah Gabriel Nicholas Praet Nynke Deckers

Thank You

